
Homework 5

Deep Learning 2025 Spring

Due on 2025/4/7

1 True or False

Problem 1. By adding noise to the embedding of a sequence of words and conditionally resample the

perturbed sequence to generate a new sequence, we can use diffusion model to generate text.

2 Q&A

Problem 2. (DDPM objective)

In the diffusion model, we train a model ϵθ that takes xt and step t as input to be the parameterization of µθ

to predict µ̃t(the mean value of xt−1 given xt and x0), which is used in the reverse process where

pθ (xt−1 | xt) = N (xt−1;µθ (xt, t) ,Σθ (xt, t)) (1)

The forward process is defined as:

q(xt|xt−1) = N (xt;
√
αtxt−1, (1− αt)I), q(x1:T |x0) =

T∏
t=1

q(xt|xt−1) (2)

use the reparameterization trick, we have

xt =
√
αtxt−1 +

√
1− αtϵt−1,where ϵt−1, ϵt−2, · · · ∼ N (0, I) (3)

1. Prove that with reparameterization trick we have

xt =
√
ᾱtx0 +

√
1− ᾱtϵ,where ϵ · · · ∼ N (0, I) (4)

which means q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), where {at} is a given array and ᾱt =

∏t
i=1 αi.

2. Prove the conditional probability q(xt−1 | xt,x0) (which is the target of pθ(xt−1|xt)) is a Guassian

distribution with mean

µ̃t =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵ
)

(5)
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3. Since the KL divergence is always non-negative, we have

− log pθ(x0) ≤ − log pθ(x0) +DKL(q(x1:T |x0)∥pθ(x1:T |x0)) (6)

Show that

Eq(x0:T )

[
log

q(x1:T |x0)

pθ(x0:T )

]
≥ −Eq(x0) log pθ(x0) (7)

and

Eq(x0:T )

[
log

q(x1:T |x0)

pθ(x0:T )

]
= Eq[DKL(q(xT |x0) ∥ pθ(xT ))︸ ︷︷ ︸

LT

+

T∑
t=2

DKL(q(xt−1|xt,x0) ∥ pθ(xt−1|xt))︸ ︷︷ ︸
Lt−1

− log pθ(x0|x1)︸ ︷︷ ︸
L0

]

(8)

4. In practise LT is a constant and L0 is often taken out for separate processing so here we consider the

expression of L1:T−1 and since pθ(xt−1|xt) and q(xt−1|xt,x0) are gaussian distribution, we have

Lt = Ex0,ϵ

[ 1

2∥Σθ∥22
∥µ̃t(xt,x0)− µθ(xt, t)∥2

]
(9)

Prove that the formula above can be rewritten as:

Lt = Ex0,ϵ

[ (1− αt)
2

2αt(1− ᾱt)∥Σθ∥22
∥ϵ− ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵt, t)∥2

]
(10)

where µ̃t =
1√
αt

(
xt − 1−αt√

1−ᾱt
ϵ
)
and µθ(xt, t) =

1√
αt

(
xt − 1−αt√

1−ᾱt
ϵθ(xt, t)

)

Problem 3. (Fisher divergence) Let pdata (x) denote the data distribution (unknown) and pθ(x) =
e−Eθ(x)

Z(θ)
the model distribution, where Eθ(x) is the energy function and Z(θ) the partition function. The score function

of a distribution p(x) is defined as ∇x log p(x). The Fisher divergence between pdata and pθ is given by:

F (pdata∥pθ) =
1

2
Ex∼pdata

[
∥∇x log pdata(x)−∇x log pθ(x)∥22

]
.

Prove that the Fisher divergence can be rewritten as:

F (pdata∥pθ) = Epdata

[
1

2
∥∇x log pθ(x)∥22 + tr(∇2

x log pθ(x))

]
+Const.,

where tr(∇2
x log pθ(x)) is the trace of the Hessian of log pθ(x).

Hint: Refer to the paper by Song, 2020[2].

Problem 4. (Denoising score matching) Prove that the objective in denoising score matching

∫
qσ(x̃)∇x̃ log qσ(x̃)

⊤sθ(x̃)dx̃ (11)

can be rewritten as

Ex∼pdata (x),x̃∼qσ(x̃|x)
[
∇x̃ log qσ(x̃ | x)⊤sθ(x̃)

]
(12)
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Problem 5. The schedule of increasing noise levels in the noise-conditioned score network (NCSN)[2] resembles

the forward diffusion process in denoising diffusion probabilistic models (DDPM)[1]. Explain how the diffusion

process in DDPM can be used to approximate the score function sθ (xt, t) in NCSN.
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