
Homework 3

Deep Learning 2025 Spring

Due on 2025/3/24

1 True or False

Problem 1. If we optimize qθ w.r.t. a multi-modal distribution p using KL-divergence KL(qθ ∥ p), we will

get a distribution that uniformly covers all the modes.

Problem 2. The reparameterization trick applied in VAE helps passing gradient back to the encoder.

Problem 3. It is easy to compute the exact posterior p(z|x) using VAE.

Problem 4. In β-VAE, large β enforces latent variables to be correlated with each other.

2 Q&A

Problem 5. (EM Algorithm) In statistics, expectation–maximization (EM) algorithm is an iterative method

to find (local) maximum likelihood or maximum a posteriori (MAP) estimates of parameters in statistical

models, where the model depends on unobserved latent variables.1 Consider a latent variable model with

parameter θ

pθ(x, z) = pθ(x|z)p(z)

and we want to find the MLE of θ, i.e.,

θ̂MLE = argmax
θ

log pθ(x) = argmax
θ

log
∑
z

pθ(x, z)

The E-step (expectation) of EM algorithm is given by

Q(θ|θ(t)) = Ez∼p
θ(t)

(z|x) [log pθ(x, z)]

and the M-step (maximization) is given by

θ(t+1) = argmax
θ
Q(θ|θ(t)).

Prove that the following optimization process is equivalent to EM algorithm. Define F (θ, q) = Ez∼q [log pθ(x, z)]+

H(q), where H(·) is Shanon entropy.

1https://en.wikipedia.org/wiki/Expectation-maximization_algorithm
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(E-step)

q(t) = argmax
q
F (θ(t), q)

(M-step)

θ(t) = argmax
θ
F (θ, q(t))

Problem 6. (KL-Divergence)

1. (Gaussian) Prove that the KL-divergence between two d-dimensional Gaussian distributions N0(µ0,Σ0)

and N1(µ1,Σ1) has the following form:

KL(N0 ∥N1) =
1

2

{
tr
(
Σ−1

1 Σ0

)
+ (µ1 − µ0)

TΣ−1
1 (µ1 − µ0)− d+ log

|Σ1|
|Σ0|

}
.

2. (Convexity) Let λ ∈ [0, 1] ⊂ R. p1, p2, q1 and q2 are discrete distributions over alphabet Y = {1, 2, . . . , n}

with nonzero probabilities. Prove

KL(λp1 + (1− λ)p2 ∥λq1 + (1− λ)q2) ≤ λKL(p1 ∥ q1) + (1− λ)KL(p2 ∥ q2).

3. (Inclusive/Exclusive) We can recognize the difference of inclusive and exclusive KL via a simple example.

Consider the target distribution

p(x) =
1

3
N (−3, 1) +

2

3
N (3, 1)

which is a multi-modal Gaussian mixture. We model the variational distribution q(x) as a Gaussian

distribution with mean µ and variance σ2, where µ and σ are unknown parameters. Write a program

to find the optimal µ and σ w.r.t. inclusive and exclusive KL respectively. You need to submit a figure

demonstrating the original distribution and two devrived variational distributions.

4. (Variational Inference) While we used reverse KL-divergence KL(qψ(z|x)∥p(z|x)) to conduct variational

inference (i.e., optimize the first term qψ(z|x) with parameter ψ to approximate the second term p(z|x))

in lecture, Bob proposes to use the forward KL-divergence KL(p(z|x)∥qψ(z|x)). In this case, what would

be the objective for qψ(z|x)? What are the pros and cons if we use this objective for qψ(z|x) in VAE?

Hint: The objective should be in the form of expectation.

Problem 7. (GM-VAE) In standard VAEs, the prior of the latent variables is assumed to be an isotropic

Gaussian. In this problem, we use a mixture of Gaussian distributions as the prior to allow more complicated

latent representations, named Gaussian Mixture Variational Auto-Encoder (GM-VAE).

Consider a latent variable model pµ,σ,θ(x,w, z) = p(z)pµ,σ(w|z)pθ(x|w), where an observable sample x is gener-
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ated from latent variable w and z:

z ∼ Categorical(π), P(z = k) = πk for 1 ≤ k ≤ K and

K∑
k=1

πk = 1

w|z ∼
K∏
k=1

N (µk, σ
2
kI)

I(z=k)

x|w ∼ N (µθ(w), σ
2
θ(w))

where µ = [µ1, . . . , µK ], σ = [σ1, . . . , σK ], and θ are trainable parameters. The prior distribution over z is

uniform over alphabet {1, . . . ,K}. Define a variational model qψ,ϕ(w, z|x) = qψ(w|x)qϕ(z|w, x), where ψ and ϕ

are trainable parameters.

1. Derive ELBO for log pµ,σ,θ(x). Your answer should include 3 terms containing p(z), pµ,σ(w|z) and pθ(x|w)

respectively.

2. Design a training procedure for GM-VAE.
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