
Homework 2

Deep Learning 2024 Spring

Due 11:59pm, 2024/4/13

1 True or False

Problem 1. Generative models can be used to both classify and generate images.

Problem 2. We can train an energy-based model without knowing the explicit density function (or normal-

izing factor Z).

Problem 3. Stochastic Gradient MCMC is designed to solve the optimization problem argmaxθ P(θ|X),

where θ is the collection of parameters and X represents data.

2 Q&A

Figure 1: Noisy image (top row) and masked image (bottom row).

Problem 4. (Hopfield Network) Answer the following questions about the Hopfield network.

1. Figure 1 shows two types of degraded images: noisy image and masked image. Design an appropriate

process to retrieve stored patterns using the Hopfield network for each case respectively.

(Hint: The unmasked part of a masked image is the same as ground truth. By contrast, most pixels of

a noisy image are different from the ground truth.)
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2. (Redundancy) Although a Hopfield network explicitly stores only N patterns, redundancy in its state

space allows it to represent many more configurations. Suppose the Hebbian learning rule is given by

W = 1
N

∑
p ypy

T
p . We want to use the Hebbian learning rule to construct a Hopfield network. Prove

that with N orthogonal patterns yp (yp is a N -dim vector) for p = 1, . . . , N , the Hopfield network can

memorize all 2N patterns, in the sense that each of these patterns corresponds to a local minimum of

the network’s energy function.

Problem 5. (Boltzman Machine) Consider a fully connected Boltzman machine. We remark the visible units

as v, the hidden units as h, and all units y = (v, h). The joint probability of v and h is given by

P(v, h) =
exp(yTWy)∑
y′ exp(y′

TWy′)
. (1)

And the marginal probability of v is given by

P(v) =
∑
h

P(v, h). (2)

We aim to maximize the log-likelihood, and the loss is given by

L(W ) = − 1

|P |
∑
v∈P

logP(v). (3)

Prove that the gradient of Eq. (3) has the following form:

∇W loss(W ) = − 1

|P |
∑
v∈P

(
Eh|v

[
yyT

]
− Ey′

[
y′y′

T
])

.

Problem 6. (Gaussian RBM) Consider a restricted Boltzman machine with a single hidden layer and the

following energy function EW,b : RNh+Nv → R:

EW,b(v, h) =
1

2
(v − b)T (v − b)− vTWh

where W , b are trainable parameters, v is visible continuous-value units (i.e., v ∈ RNv ), and h is hidden

discrete-value units (i.e., h ∈ {−1, 1}Nh).

1. Derive the conditional distribution P(v|h).

2. Derive the gradient of b if we train this model based on the maximum log-likelihood principle. (Hint:

Your answer should contain the form of an expectation.)

Problem 7. (Undirected Probabilistic Model) A graphical model or probabilistic graphical model

or structured probabilistic model is a probabilistic model for which a graph expresses the conditional
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Figure 2: An example of undirected probabilistic model.

dependence structure between random variables. 1 In an undirected graphical model, an edge implies de-

pendence between the corresponding random variables. Figure 2 shows an example, where the joint probability

distribution can be factorized as

P(A,B,C,D,E, F ) =
1

Z
fAD(A,D)fAC(A,C)fAE(A,E)fBC(B,C)fEF (E,F )

for some non-negative functions fAB , fAC , fAD, fAE , fBC , and fEF , and a normalizing factor Z (also called

partition function).

1. Are D and F independent?

2. Write down the unnormalized conditional distribution P(B,E|A). “unnormalized” means you can omit

the normalizing factor. Are B and E independent given A?

3. We model P(A,B,C,D,E, F ) as a Boltzman distribution

P(A,B,C,D,E, F ) ∝ exp(−E(A,B,C,D,E, F ))

where E is the energy function. Show that the energy function can be expressed by the following

factorization:

E(A,B,C,D,E, F ) = EAC(A,C) + EAD(A,D) + EAE(A,E) + EBC(B,C) + EEF (E,F )

Problem 8. (Importance Sampling) x is a random variable. Given target distribution p(x) and target

random variable y = f(x), importance sampling gives an estimator of E[y] from a proposal distribution q(x):

Ex∼p [f(x)] = Ex∼q

[
p(x)

q(x)
f(x)

]
≈ 1

N

∑
x∼q(·)

p(x)

q(x)
f(x).

Prove that when q has the following form,

q⋆(x) ∝ p(x)|f(x)|

the variance of this estimator can be minimized.

Problem 9. (Markov Chain Monte Carlo)

1https://en.wikipedia.org/wiki/Graphical_model
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1. Prove random-walk Metropolis-Hasting sampling (i.e., s′ ← s+Gaussian noise) is a valid MCMC algo-

rithm, i.e., it constructs a Markov chain which is ergodic and satisfies the detailed balance property.

2. Prove that Gibbs sampling is a special case of Metropolis-Hasting sampling, and that the acceptance

rate of Gibbs sampling (i.e., α(s→ s′)) is 1.

Here we consider the following 2-step Gibbs proposal: (1) randomly sample a coordinate index i; (2)

sample coordinate si from the coordinate proposal q(si → s′i) = p(s′i|sj ̸=i).

3. (Optional Question) In fact, Gibbs sampling is typically implemented in a cyclic fashion, i.e., running

posterior sampling in a fixed order over all the dimensions. Prove that cyclic Gibbs sampling yields

the same stationary distribution as random-order Gibbs sampling in the above question, as long as the

Markov chain can access all states under the fixed ordering.
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