
Homework 1

Deep Learning 2025 Spring

Due: 11:59pm, 2025/3/10

1 True or False

Problem 1. The greatest advantage of residual connection is that it prevents overfitting.

Problem 2. Dropout and batch normalization can be used together.

Problem 3. BatchNorm and LayerNorm are both special cases of GroupNorm.

2 Q&A

Problem 4. (Descent Lemma) Given that the gradient of function f : Rd → R is Lipschitz continuous: for

any x, y ∈ Rd, there exists an L(L > 0), such that ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥.

Prove descent lemma: f(y) ≤ f(x) +∇f(x)T (y − x) + L
2 ∥x− y∥2.

Problem 5. (Convergence of Gradient Descent) Assume function f : Rn → R is twice differentiable, L-

smooth and µ-strongly-convex. We apply gradient descent algorithm to find x⋆ = argminx f(x) starting

from x0, and ∥x0 − x⋆∥ = R. Prove that to find a xk such that ∥xk − x⋆∥ ≤ ϵ with learning rate η = 1
L ,

the number of iterations (i.e., k) should have order O(Lµ log R
ϵ ). The gradient descent algorithm is given by

xk+1 ← xk − η∇f(xk).

Problem 6. (Gradient Descent with Momentum) f(x) is defined by

f(x) =


25
2 x2 if x < 1

1
2x

2 + 24x− 12 if 1 ≤ x < 2

25
2 x2 − 24x+ 36 otherwise.

Given β = 4
9 , η = 1

9 , and initial value x0 = 3.3, show that gradient descent with momentum does not converge

in this case. Gradient descent with momentum is given by xk+1 ← xk − η∇f(xk) + β(xk − xk−1).
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Problem 7. (Quadratic Convergence) Consider an iterative algorithm with quadratic convergence for min-

imizing a smooth, strongly convex function f : Rd → R. Suppose the sequence of iterates {xk} satisfies the

quadratic convergence condition:

∥xk+1 − x∗∥ ≤ C ∥xk − x∗∥2

where x∗ is the optimal solution, 0 < C < 1 is a constant, and the initial error is bounded by ∥x0 − x∗∥ ≤ δ.

Derive the number of iterations k required to guarantee that the error satisfies ∥xk − x∗∥ ≤ ε, where ε > 0 is

a predefined tolerance.

Problem 8. (Second Order Optimization) Assume f is twice differentiable, L-smooth, and µ-strongly-convex.

∇2f is Lipchitz continuous. Consider x⋆ where ∇f(x⋆) = 0 and ∇2f(x⋆) is positive definite. Suppose x0 is

sufficiently close to x⋆. Prove that Newton’s method converges to x⋆, and the convergence rate is quadratic.

The Newton’s method is given by xk+1 ← xk − [∇2f(xk)]−1∇f(xk).

Problem 9. (Kaiming Initialization) Consider a neural network with linear layers Zl = W lX l and ReLU

activation X l = max(0, Zl−1). We make the following assumptions for every l ≥ 2:

1. W l and X l are mutually independent.

2. The elements of W l are i.i.d Gaussian variables with zero mean.

3. The elements of X l are i.i.d.

4. E
[
Zl
ij

]
= 0.

Consider the forward pass of such a neural network. If we want the variance of hidden neurons to be unchanged

from layer to layer, prove that the variance of W l should be 2
hl (l ≥ 2), where hl is the number of neurons in

the l-th hidden layer.
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